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ABSTRACT: We describe a fully customizable and integrated target-
specific “tiered” virtual screening approach tailored to identifying
and characterizing novel peroxisome proliferator activated receptor
γ (PPARγ) scaffolds. Built on structure- and ligand-based computa-
tional techniques, a consensus protocol was developed for use in the
virtual screening of chemical databases, focused toward retrieval
of novel bioactive chemical scaffolds for PPARγ. Consequent
from application, three novel PPAR scaffolds displaying distinct
chemotypes have been identified, namely, 5-(4-(benzyloxy)-3-
chlorobenzylidene)dihydro-2-thioxopyrimidine-4,6(1H,5H)-dione
(MDG 548), 3-((4-bromophenoxy)methyl)-N-(4-nitro-1H-pyrazol-
1-yl)benzamide (MDG 559), and ethyl 2-[3-hydroxy-5-(5-methyl-2-
furyl)-2-oxo-4-(2-thienylcarbonyl)-2,5-dihydro-1H-pyrrol-1-yl]-4-
methyl-1,3-thiazole-5-carboxylate (MDG 582). Fluorescence polarization
(FP) and time resolved fluorescence resonance energy transfer (TR-FRET) show that these compounds display high affinity
competitive binding to the PPARγ-LBD (EC50 of 215 nM to 5.45 μM). Consequent characterization by a TR-FRET activation
reporter assay demonstrated agonism of PPARγ by all three compounds (EC50 of 467−594nM). Additionally, differential PPAR
isotype specificity was demonstrated through assay against PPARα and PPARδ subtypes. This work showcases the ability of
target specific “tiered screen” protocols to successfully identify novel scaffolds of individual receptor subtypes with greater efficacy
than isolated screening methods.

■ INTRODUCTION
Peroxisome proliferator-activated receptors (PPARs) are ligand
activated transcription factors that form a subfamily of the
nuclear receptor superfamily. PPARs form heterodimers with
the 9-cis-retinoic acid receptor (RXR) and activate transcription
events by binding to a specific DNA element called the PPAR
response element (PPRE).1 Their transcription factor activity
accounts for a wide range of effects on metabolism, cellular
proliferation, cellular differentiation, and immune responses.2

From a pathological perspective, PPARs are implicated in a
diverse range of disease states including type II diabetes,
obesity, dyslipidemia, atherosclerosis, inflammation, and neuro-
degeneration.3−9 Presently, numerous studies have undertaken
a computational approach to drug design for PPARγ.
Application of ligand- and/or structure-based computational
methods has led to the discovery of diverse compound classes
targeting these nuclear receptors.10−14

Previous work by our group has shown the beneficial appli-
cation of target specific and tiered screen modeling approaches
to novel hit identification in nuclear receptors.15−17Accordingly,

to extend our investigation to PPARγ, we again undertook to
apply a combination of complementary in silico methodologies
and in vitro biochemical techniques tailored for the identifica-
tion and validation of novel scaffolds for these nuclear
receptors. Building on earlier studies, we parametrized and
validated individual components of a PPAR-focused virtual
screening protocol. These components were integrated in a
tiered screen protocol and used to virtually predict novel
scaffolds with affinity or selectivity for PPARγ from commercial
compound vendor databases.
An in-house virtual screening platform was developed called

PyPe (parallel Python Pipeline) that incorporates both
propriety and open source computational tools to provide a
highly customizable, fast, and homogeneous environment for
virtual high throughput screening (vHTS). The tiered screen
protocol was constructed and run using this platform. From
a database of approximately 200 000 molecules, a total of

Received: November 11, 2011
Published: May 14, 2012

Article

pubs.acs.org/jmc

© 2012 American Chemical Society 4978 dx.doi.org/10.1021/jm300068n | J. Med. Chem. 2012, 55, 4978−4989

pubs.acs.org/jmc


20 compounds were identified as putative (virtual) hits.
Through the use of biochemical competitive binding tech-
niques, three compounds were confirmed with micromolar
(0.25−5.45 μM) binding affinity to PPARγ-LBD. Importantly,
PPAR isotype selectivity studies identified one compound as a
PPARγ specific scaffold 1 (MDG 548), one as a pan-PPAR
isotype compound 2 (MDG 559), and a dual targeting PPARδ/
γ agent 3 (MDG 582). The compounds identified present novel
chemotypes not previously reported as having activity against
these PPAR receptor targets. Our work also demonstrates the
utility of a tiered screening model that shows greater screening
efficacy against PPARs than can be achieved through use of the
discrete methods used alone.

■ RESULTS
Protein Receptor Selection, Preprocessing, and

Protein−Ligand Interaction Fingerprint (PLIF) Analysis.
At the time of study, 98 PPAR X-ray crystal structures were
present in the Protein Data Bank (PDB). Of this number, 73
structures were of PPARγ, of which 69 were cocrystallized with
a bound druglike molecule. In order to further stratify this data
set, PLIF analysis was used to map the protein−ligand interac-
tions profiles observed. A group of 22 structures was selected
(see Supporting Information Table S1) for consideration in
structure-derived pharmacophore model generation. All 22
structures were included in a conformational analysis and
validation study (group A). The inclusion of a broad spectrum
of cocrystallized chemotypes provided a sufficient span for
PPAR ligand conformational space exploration. A 12-member
subset of group A ligands was used for consensus pharma-
cophore query generation (group B). These compounds showed
conservation of the hydrogen bond interaction profile exhibited
by the PPARγ agonist rosiglitazone (hydrogen bonding at Ser289,
His323, His449, and Tyr473).
Conformer Generation: Method Comparison and

Validation. To compare the ability of OMEGA and MOE
(stochastic/LowModeMD) to reproduce ligand bioactive
conformations, a comparison of the lowest rmsd conformations
generated to the actual crystal pose was investigated for the
group A ligands. Method comparison showed little variation in
the lowest rmsd to bioactive conformation obtained (see
Supporting Information Table S2). OMEGA (average lowest
rmsd of 0.92) outperformed MOE LowModeMD (average
lowest rmsd of 0.96) and MOE stochastic (average lowest rmsd
of 1.03). As the difference between generation methods was
marginal, the computational calculation time for our systems
was also accounted for each method. OMEGA completed its
conformer generation steps on the ligand set in a relatively
short period of time, whereas both MOE methods were signi-
ficantly longer. As all programs were run under the same
computing conditions, OMEGA was chosen for use within this
study because of its performance in bioactive pose reproduction
and its lower CPU clock time.
Building on previous work by our group,18 we undertook

parametrization of OMEGA settings from default. The effect of
varying the max confs (maximum conformations) setting in
OMEGA was investigated. In all instances, a maximum number
of conformers enumerated by OMEGA for each ligand was
reached within a max confs setting of n = 10000. For 8 out of
22 ligands, we observed no appreciable improvement in rmsd
on variation of max confs settings. For this ligand subset, the
conformer with the lowest rmsd was within the first 100 con-
formers generated. For the other 14 ligands, an improvement in

rmsd relative to the bioactive pose was observed, validating an
increase of the parameters beyond default.
For these ligands, convergence of the lowest average rmsd

obtained (rmsd = 0.94) was met at a max confs setting of n =
1000. Increased settings to n = 5000 or n = 10000 did not
significantly improve the average rmsd score for conformations
retrieved.

Pharmacophore Modeling. We sought to assess the per-
formance of a MOE consensus pharmacophore model gener-
ated from the group B ligand set. On initial inspection of the
performance of an autogenerated query (default settings), a
large degree of ambiguity existed in the features defined by the
consensus pharmacophore creator. This lack of clarity in feature
definition was likely correlated to the chemodiversity of the
ligand set. Consequently, the automatically generated pharma-
cophore was considered unsuitable for use in PPARγ modulator
virtual screening. To simplify and refine the query, while
retaining high confidence in its derivation, a manual query was
created from a single potent PPARγ agonist (rosiglitazone) and
assessed against a validation screening set.
The PPARγ-LBD bound conformation of rosiglitazone (PDB

code 1FM6) was selected as the model template ligand (Figure 1).

Use of the pharmacophore query editor program in MOE
attributed 11 potential pharmacophoric features from the
ligand. In order to reduce the feature list, pharmacophoric
points informed by the earlier PLIF analysis were selected in
the first instance, including the three pharmacophore points
known to be involved in hydrogen bonding within the PPARγ
LBD. All three features (F1, F2, and F3) were mapped onto the
thiazolidinedione (TZD) region of the ligand. In rosiglitazone,
the carbonyl oxygen (mapped onto the F1 feature) participates
in hydrogen bonding with His499. F2 was defined as a
hydrogen bond donor and is known to engage in hydrogen
bonding with Tyr473 in the template ligand. F3 was also
defined as an acceptor group, and the carbonyl oxygen is
known to make two hydrogen bond interactions with Ser289
and His323. F4 and F5 were annotated as aromatic ring
centers. This initial query was designated as Hypo 1, and
multiple variants were assessed.
In total, 24 hypotheses (Hypo 1 to Hypo 23) were created

(see Supporting Information Table S3). Each examined the
effects of adjusting pharmacophore model parameters and
assessing these changes in terms of the percentage of actives
and decoys retrieved from a PPARγ DUD screening set. Ten

Figure 1. Hypo 1 pharmacophore query: five-point pharmacophore
query modeled on the bioactive conformation of rosiglitazone within
the PPARγ-LBD. Three features are located on the TZD headgroup,
with two aromatic features mapped onto core and tail aromatic regions
of the molecule: Acc, acceptor; Don, donor; Aro, aromatic. The figure
was generated using MOE (version 2010.10).
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conditions examined inclusion of a sixth feature (PCH Hyd) in
the model, but this inclusion did not yield improvement over
Hypo 1. Hypo 1 successfully retrieved 83% of the actives group,
while it retrieved only 21% of the decoy set. With a percent
differential of 62%, indications show that this model is largely
selective for PPARγ DUD set actives over decoy molecules. As
the DUD database is based on physicochemical similarity
between actives and decoys, this supports the idea that the
model has the ability to separate the two groups based on their
topological and presumed physiological differences. Multiple
variations on the lead model did not result in an improve-
ment in the percentage difference between actives and decoy
retrieved (% actives − % decoys = % difference). Interestingly,
Hypo 23 also retained a percentage difference of 62%. This
model included explicit volume restrictions on where ligands
were permitted to map within the pharmacophore model.
However, Hypo 23 only allowed 66% of actives through versus
83% of Hypo 1. As the comparatively simpler Hypo 1 scored
equally as well, it was chosen over Hypo 23 for inclusion in the
tiered screen. The results of this study suggest that basing a
pharmacophore model on a single validated PPARγ ligand
affords a viable approach in the initial stages of a target-specific
virtual screening protocol. As the DUD database active set
displays topological diversity, it is encouraging that the un-
complicated 3D pharmacophore model can retrieve a high
proportion of true positives/active compounds. Comparison of
percentage differential was used as an initial validation metric.
In tandem to this approach, pharmacophore models were also
subjected to validation by ROC curve analysis on the models'
performance against the PPARγ DUD database. The Hypo 1
pharmacophore model scored highly in its ability to distinguish
actives from putative decoy molecules (AUC = 0.92).
Docking Validation. To validate use of FRED19 within a

tiered PPARγ virtual screening protocol, the ability of the

program to reproduce bioactive ligand poses was examined. An
evaluation of scoring functions applied to the comparative
ranking of the bioactive conformation of rosiglitazone (PDB
code 1FM6) to that of multiple conformations (n = 1000)
showed that of those functions implemented in FRED,
Chemgauss3 ranked the bioactive conformation first out of
the conformational data set (Figure 2) docked. FRED/
Chemgauss3 was selected for use in the docking aspects of
the virtual screening protocol. The PPARγ DUD data set was
docked into the PPARγ receptor, and output compound poses
were ranked. ROC curve analysis, which assesses the ability of a
model to distinguish actives from inactives, was used to assess
the performance of the FRED protocol. The analysis shows that
the model is able to successfully distinguish between known
PPARγ actives and decoy molecules for the PPARγ DUD data
set (AUC = 0.83). In a study carried out by Jain et al., the
performance of another docking program (Surflex-Dock) on
the PPARγ DUD data set was comprehensively evaluated and
yielded similar values to those displayed by FRED (AUC =
0.88).20

ROCS: Query Creation and Validation. To assess the
utility of ROCS, a shape-based comparison virtual screening
program, in a tiered PPAR protocol, the PPARγ-LBD co-
crystallized ligand GI262570 (PDB code 1FM9) was used as a
shape template for a quantitative analysis. GI262570 was
chosen because of its larger volume compared to rosiglitazone,
thus potentially allowing larger molecules through a shape
matching query. As PPARγ-LBD comprises a large binding
cavity (∼1300 Å3), allowing for size diversity among screening
molecules was seen as potentially advantageous. Comparison of
ROCS scoring functions was performed analogously to that
used for the FRED evaluation. The total set of ROCS scoring
functions were analyzed and performance ranked (AUC).
Results demonstrate that ColorTanimoto scoring function was

Figure 2. FRED docking validation: superimposition of the native (purple) and re-docked pose (yellow) of rosiglitazone within the PPARγ-LBD.
The rmsd of docked bioactive conformer to the receptor bound ligand was calculated at 0.05 Å. The figure was generated using MOE (version
2010.10).
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best able to distinguish PPARγ actives over decoys (AUC =
0.95). Analysis revealed that 10 out of 13 ROCS scoring
functions returned an AUC score of ≥0.92. RefTversky received
an AUC of 0.808 while ShapeTanimoto and FitTversky received
0.77 and 0.72, respectively. ROCS/ColorTanimoto was accord-
ingly selected for use within the protocol. Ligand-based virtual
screening comparison work using the DUD PPARγ set returned
similar results for the performance of ROCS21 The data addi-
tionally suggest that use of a simple shape-based comparison
method in PPARγ virtual screening is appropriate in either single
or tiered virtual screen approaches.
Tiered Screening: Application and Validation. Figure 3

illustrates the component comparative studies of this investi-
gation and their integration to a single tiered platform. To
facilitate integration of the components, we advanced a be-
spoke, customizable parallel dataflow environment. Scripted in
Python, PyPe functions analogously to environments such as
Pipeline Pilot22 and Knime.23 Our aim here was to ascertain the
benefit(s) of methodology integration over application of the
individual methodologies for target-specific screening perform-
ance. Figure 5 illustrates the workflow integration employed to
create the tiered screen platform in PyPe.
Analysis of the output showed that merging of the individual

models into a tiered screening consensus model resulted in a
selective and accurate virtual screening pipeline for PPAR
(AUC = 0.80). Although the consensus score is derived from
the average scores of each component of the tiered screen
protocol (MOE Ph4, FRED, and ROCS), the AUC score
obtained from this run is not simply an average of the AUCs
obtained from the three validation steps carried out in earlier
work. This arises from the fact that the pharmacophore search
acts as a “master filter”, where passed molecules are sub-
sequently sent to FRED and ROCS for further interrogation.

As validation of individual screening tools was carried out by
the full (unfiltered) DUD set (82 actives/3112 decoys), this
explains the differences arising in the ROC analysis.
Analysis of PPARγ DUD active/decoy hit lists from

individual methods versus tiered screen results revealed several
points of note. Analysis of negative predictive value (NPV)
across screening methods revealed a high rate of negative pre-
diction in all cases, with the tiered screen protocol marginally
outperforming stand-alone methods (NPV values: tiered screen,
0.97; MOE Ph4, 0.91; FRED, 0.95; ROCS, 0.92). Regarding false
positive rate (FPR) values obtained for the PPARγ DUD data set,
ROCS retained the lowest rate (0.008) followed by tiered
screen and FRED (both 0.021) and MOE Ph4 (0.024).
Although ROCS performed better than tiered screen or FRED/
MOE Ph4 with relation to FPR, the structural similarities
between the PPARγ DUD set and model ligand used may
account for this. Overall, it is believed that application of three
screening methods simultaneously places more stringent filters
on database virtual screening. Using a consensus method instills
a higher level of confidence in the results, as all methods point
in the same discovery direction. As initial hit list sizes can reach
several thousand in a typical run, the application of rigorous
filtering in the virtual screen can potentially reduce subsequent
workload and facilitate chemotype scaffold hopping.
Figure 4 below describes the virtual screening workflow

utilized. SPECS chemical vendor database was initially reduced
to about 100 000 compounds through application of a set of
PPARγ agonist physiochemical descriptors. The reduced
compound list was then screened through the PyPe tiered
screen, and a prioritized consensus scored (C_score) hit list
of 900 compounds was retained. These compounds were
clustered based on molecular similarity to furnish n = 20
clusters, affording chemotype diversity across the consensus

Figure 3. Validation workflow for tieredScreen model. Conformer generation, MOE pharmacophore, FRED docking, and ROCS shape matching
were parametrized and validated against the PPARγ DUD set before incorporation into a tieredScreen model. Rosiglitazone in complex with PPARγ-
LBD (1FM6/BRL) was used for manual pharmacophore generation and docking, while GI262570 in complex with PPARγ-LBD (1FM9/570) was
used for shape matching query generation. Color coding is as follows: pink, databases; black, PDBs; gray, ligand−PPARγ complexes; cyan, programs
used; purple, validation results.
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scored subset. The highest ranked compound in each of the
clusters was purchased for biological assay. To judge the
benefits of tiered screen applicability, the output ranks of 1, 2,
and 3 were analyzed for individual screening techniques and
compared to that of the tiered screening C_score (Table 1). In
the cases of 1 and 2, the C_score rank outperforms those
rankings obtained from MOE pharmacophore, FRED or ROCS
alone. The C_score performance of 3 outperforms only the
pharmacophore; however, the high consensus ranking of the
compound does bestow a measure of greater confidence to its

selection for evaluation in assay. Through C_score ranking,
both 1 and 2 were placed in enriched areas of the PyPe tiered
screen output list (top 1.3% and 2.3%, respectively). This
compared favorably to placement seen by individual screening
methods. The C_score of 3 performed poorly compared to
other hit compounds and individual method ranks. Aside from
its C_score, the prioritization of 3 for biological testing arises
from the application of the clustering applied to the tiered
screened data set. As a highest ranked diverse structure
(by molecular similarity), 3 is advanced not only because

Figure 5. PyPe tiered screening protocol. Various components of the PyPe tiered screening protocol are arranged in a linear or parallel topology.
splitDB splits or distributes stored database compounds evenly to the compute nodes. downloadDB downloads compounds from the database on
each compute node after the component splitDB carries out data load balancing. Subsequently, CORINA and OMEGA convert database compounds
from SMILES to 3D molecular representations. MOE pharmacophore search creates a pharmacophore screening model via an automated consensus
query (or manually generated Ph4 input file) and filters the database according to the pharmacophore query used. After this step, molecules that
clear the pharmacophore are passed to FRED and ROCS for docking and shape-based superimposition query generation, respectively. The
slaveMerge component carries out data merging on compute nodes, while merge gathers together all incoming files into a single file. After merging,
compounds are sorted and indexed separately for FRED, ROCS, and MOE Ph4 and a consensus score is calculated by the calc component. ROC
curve output analysis is carried out using the ROC component in PyPe. Results are exported in multiple formats for analysis.

Table 1. Individual and C_score Ranking of Active Compoundsa

compd SPECS code MOE Ph4 rank FRED rank ROCS rank C_Score C_Score rank

1 AN-698/15136006 223/900 111/900 134/900 156.0 12/900
2 AK-968/41923327 146/900 68/900 334/900 182.7 21/900
3 AF-399/40992009 810/900 185/900 631/900 542.0 641/900

aListed above is the rank of hit compounds in individual screening techniques (MOE pharmacophore, FRED, and ROCS) versus the rank
designated by consensus score (C_Score).

Figure 4. Virtual screening workflow. SPECS database was reduced from approximately 200 000 compounds to approximately 100 000 using a set of
PPARγ-like physiochemical descriptor filters. Through PyPe tiered screening, 900 top ranked molecules (C_Score) were then subjected to molecular
clustering. The best C_score compound from each cluster was brought forward for biological assay, and subsequently three compounds showed
activity in FP and/or TR-FRET.
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of consensus scoring but also because of scaffold diversity,
essential in this instance where scaffold hopping away from the
TZD warhead is paramount.
Competitive Binding of Virtual Screening Hits. To

examine potential biological activity of virtual screening “hits”,
initial assessment involved testing the compounds at a single-
point concentration (100 μM) in fluorescence polarization
(FP) assay. From 20 compounds assayed, three compounds
(1, 2, 3) displayed competitive binding to the PPARγ-LBD
comparable to that of the control (rosiglitazone, 100 μM).
Consequently, eight-point dose response curves were con-
structed to determine EC50 values for these putative hits. From
FP dose response curves, 1 was shown to bind PPARγ-LBD
with an EC50 of 325 ± 80 nM. 2 and 3 displayed EC50 values of
5.45 ± 1.2 μM and 2.4 ± 0.8 μM, respectively (Figure 3).
Positive control displayed activity in line with that previously
reported in the literature.24 1, 2, and 3 displayed competitive
binding activities in the mid-nanomolar to low micromolar
range, with 1 displaying the strongest affinity for PPARγ-LBD.
From initial FP investigations, the competitive binding char-

acteristics of the three hit compounds were determined using
an alternative complementary technique. Time resolved fluo-
rescence resonance energy transfer (TR-FRET) is a recognized
method for overcoming interference from compound auto-
fluorescence or light scatter from precipitated compounds.24 In
order to further and better qualify results obtained from FP and
to rule out any possible false positive data from compound
autofluorescence or insolubility, 1, 2, and 3 were assayed using
TR-FRET. All three compounds definitively demonstrated the
competitive binding characteristics displayed in FP. In each
case, positive control compounds were included for exper-
imental control and calculated EC50 values were in agreement
with values referenced in the kit literature24 (Table 2).
In order to determine the PPAR isotype selectivity of the

compounds, 1, 2, and 3 were also tested in TR-FRET com-
petitive binding assays against PPARα- and PPARδ-LBDs
(Table 2, Figure 6). Compounds were initially assessed at two
concentrations (50 and 100 μM) to ascertain potential
competitive binding to the PPARα-LBD or PPARδ-LBD. In
the case of 1, the compound did not display statistically
significant binding to either the PPARα or PPARδ isotypes
(P < 0.05). These results suggest that 1 displays a specific high
affinity for the γ isotype of the PPAR family. Compound 2 de-
monstrated appreciable binding to all three isotypes as deter-
mined by TR-FRET competitive binding (γ/α/δ ratio = 1:2:4)
indicating a pan-PPAR activity profile. Compound 3 displayed
competitive binding to both the γ and δ PPAR isoforms (γ/δ
ratio = 1:10.8). Additionally, 3 did not show effective displace-
ment of pan-PPAR fluormone at ≤100 μM, positioning it as a
dual PPARγ/δ scaffold.
PPARγ TR-FRET Activation Reporter Assay. Consequent

from on-target biochemical validation of compounds 1, 2, and 3
competitive binding to PPARγ-LBD, activity was assessed in a
cell based TR-FRET activation reporter assay (Figure 7). Over
the compound concentrations assayed (10 nM to 10 μM), all
compounds displayed dose-dependent agonism of PPARγ-LBD
within the cellular reporter assay. Compound 1 retained the
highest affinity toward the receptor (EC50 = 0.467 ± 0.139 μM),
while both compounds 2 and 3 demonstrated higher affinities
within the activation reporter assay compared to that shown in
the on-target competitive binding studies (EC50 = 0.682 ±
0.357 μM and 0.594 ± 0.059 μM, respectively). Interestingly, in
comparison to rosiglitazone, both compounds 2 and 3 did not

induce full receptor activation at the maximal concentrations
assayed (Table 2). Compound 1 showed comparable activation
to rosiglitazone within the concentration window assayed. All
experimental compounds were also assayed for activity as
PPARγ antagonists and failed to abrogate rosiglitazone induced
PPARγ activation at ≥10 μM (data not shown). In view of
these findings, we suggest that 1, 2, and 3 show differing
degrees of agonism against PPARγ-LBD within this TR-FRET
cell-based activation reporter assay.

Compound Chemodiversity. To quantify novelty of
newly identified compounds, the structural similarity of 1, 2,
and 3 was contrasted to that of the 22 PPAR actives used in the
ligand training set (see Supporting Information Table S1). As
documented in Table 3, all compounds showed diversification
from the established chemical scaffolds contained within the
ligand set. As determined by Tanimoto coefficient (varying
settings), none of the new compounds exhibit a similarity of
>0.322 to those known ligands contained in the data set.
Furthermore, structural similarity was calculated for each novel
compound against the DUD PPARγ active set. Across the
different fingerprint schemes used in Pipeline Pilot (FCFP4/6
and ECFP4/6), the average calculated Tanimoto coefficient for
1, 2, and 3 was 0.198, 0.245, and 0.188, respectively. To further
quantify novelty, all hit compounds were screened (similarity
searching) against established drug databases to compare chemo-
type originality to known PPAR modulators (see Supporting
Information Table S4), again confirming chemotype novelty. We
conclude that the use of such a tiered screening protocol for
identification of novel PPAR scaffolds has delivered a scheme
capable of discovering structurally dissimilar active chemotypes.

■ DISCUSSION

In summary, the work presented has showcased the ability of a
custom built tiered screening protocol to computationally iden-
tify novel scaffolds for PPARγ. Implementation of an equally
weighted consensus scoring function across ligand- and structure-
based drug discovery techniques focused an initial large database
size to that more amenable to further investigations. Through
biochemical assay, virtual hits were experimentally tested, resulting
in the discovery of three novel small molecule PPAR scaffolds,
with activities spanning from low micromolar to mid-micromolar
concentration ranges. 1 displayed specific binding within tested
concentrations against PPARγ, with an affinity approximately
double that of rosiglitazone (EC50 of 215 nM vs 120 nM). In
contrast, 2 showed differing levels of affinity for three PPAR
receptor subtypes. Interestingly, 2 displayed preferential binding to
PPARγ but retained potency (decreasing) against PPARα and
PPARδ, respectively. It has been postulated that agonism of all
three PPAR subtypes could have benefits in a broad spectrum of
metabolic diseases.26 Previous work on PPAR pan-agonist
development has revealed compounds with both similar and
differing ratios of PPAR isotype preferential binding.27,28

Compound 3 was shown to have dual affinity for both PPARγ
and PPARδ. On the basis of the intricate involvement of
PPARγ/δ on lipid metabolism, dual target modulation has been
suggested as a potentially beneficial approach toward treatment
of hyperlipidemia, insulin resistance, and attenuation of athero-
genesis. Indeed, several studies have shown positive preclinical
data emanating from dual PPARγ/ δ targeting treatments.29,30 In
further support of compound activity, 1, 2, and 3 were shown to
display varying degrees of agonism within a PPARγ TR-FRET
activation reporter assay. This result shows the ability of all
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compounds to induce PPARγ activation within a cellular system
and diminishes the potential for reporting on screening artifacts.

In terms of the computational strategies employed and
evident from the chemical diversity of compounds discovered,
the tiered PPAR protocol is able to explore vast regions of
chemical space in a manner that is unbiased by any individual
computational screening technique. Retrieved actives typically
displayed higher ranks in tiered screening hit lists versus that of
MOE pharmacophore, FRED, or ROCS alone. Structural
similarity studies have shown the ability of the protocol to
identify novel PPAR chemotypes. It is our intention to further
investigate the biological activity of compounds showing
competitive binding against the targets of interest, including
full characterization of their effects in diverse cellular models.
Promising hits will be subject to analogue/substructure explo-
ration to build informative structure−activity relationship data
and improve lead druglikeness. Also, the utility of the integrated
tiered screening protocol used here will be further explored
across other members of the nuclear receptor superfamily.

■ METHODS
PPARγ Receptor Selection, Preprocessing, and PLIF Anal-

ysis. Seventy-three PPARγ X-ray crystal structures were downloaded
from the RCSB Protein Data Bank.31 To reduce the list size and imple-
ment a systematic PDB selection process, several exclusion criteria
were applied to the structures: (1) Only structures with cocrystallized
druglike compounds were chosen. (2) No mutated protein structures
were included. (3) Repeated ligand−protein complexes were excluded.
Structures were then imported in MOE (version 2010.10, Montreal,
Canada), and PPARγ-LBD repeats, cocrystallized biocomplexes
(co-regulators, DNA, etc.), water molecules, and repeated ligands
were removed. The proteins were superimposed using MOE's Protein
Align function (default) in order to carry out protein ligand interaction
fingerprint (PLIF) analysis. In brief, PLIF is a method for analyzing the
interactions between ligands and proteins using a fingerprint scheme
that allows for a convenient structural differentiation between

Table 3. Tanimoto Coefficient Scores for 1, 2, and 3 against
Group A PPAR Ligandsa

compd FCFP 4 FCFP 6 ECFP 4 ECFP 6

1 0.258 0.180 0.192 0.195
2 0.322 0.143 0.227 0.169
3 0.209 0.139 0.202 0.128

aReported is the highest degree of similarity shown between a training
set ligand and novel screening hits for each of four fingerprint schemes
used (i.e., FCFP4, FCFP6, ECFP4, ECFP6).

Figure 6. FP and TR-FRET competitive binding assay for PPAR isotypes. Positive controls were used in each experiment to judge experimental
efficacy: PPARγ, rosiglitazone/GW1929; PPARα, GW7647; PPARδ, GW0742. Each point represents triplicate data from at least two independent
experiments. Error bars represent the standard error of the mean (SEM). Assay Z′ factors are as follows: FP PPARγ, 0.82; TR-FRET PPARα, 0.61;
TR-FRET PPARδ, 0.56; TR-FRET PPARγ, 0.79.

Figure 7. GeneBLAzer PPARγ 293H DA cell-based assay: TR-FRET
based activation reporter assay for 1, 2, 3, and rosiglitazone.
Concentrations ranged from 0.1 to 10 000 nM. Response ratio is
calculated as percentage of maximum emission ratio observed at
10 μM rosiglitazone. Each point represents triplicate data from at least
two independent experiments. Error bars represent the standard error
of the mean (SEM): assay Z′ factor, 0.91.
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complexes. Protein−ligand interaction profiles were analyzed, and PPARγ
complexes were segmented into two groups (group A and group B)
dependent on the ligand−protein interaction profiles observed.
Database of Useful Decoys (DUD). A key metric of molecular

screening techniques is active compound enrichment among top-
ranking hits. In order to avoid bias in model validation, decoys
contained in a database should resemble ligands physically so that
enrichment is not simply a separation of gross features and yet should
be chemically distinct from them so that they are unlikely to be
binders. The Database of Useful Decoys (DUD) is an assembled
database of target specific actives and decoys.32 On average, each
protein target has 36 decoys per active molecule that are physiochemi-
cally similar, but topologically distinct, to target actives. Throughout
this study, the PPARγ DUD set was used to assess a screening model's
efficacy at separating known actives from presumed decoy compounds.
Receiver Operator Curve (ROC) Analysis. A common metric

used for judging the significance of a hypothesis is to evaluate how a
model discriminates between active molecules and decoys. In a ROC
curve, the true positive rate is plotted as a function of the false positive
rate. Each point on the ROC curve represents a sensitivity/specificity
pair. An ideal test with perfect discrimination (no overlap in the two
distributions) has a ROC plot that passes through the upper left corner
(100% sensitivity and specificity).33 Usage of ROCS as a metric of
virtual screening utility assessment has previously been discussed and
advocated.20,21

PyPe. PyPe is a cluster side parallel platform for vHTS that takes
advantage of current computational tools and high performance
computing technologies. In advancing PyPe, we create a homogeneous
parallel system that dramatically decreases the turnaround time of large
computational tasks with minimum setup. The PyPe platform was
designed to unify the interfaces between diverse applications and users.
Python/MPI (mpi4py) was used to wrap tools from CCG, OpenEye,
Molecular Networks, MySQL, ReportLab, Gnuplot and R.
PyPe was developed using a modular design that is easily main-

tained using the distributed version control software Git. A modular
design has key advantages such that each subunit can be easily tested
(unit or regression) and makes the learning curve for the user and
developer easier. PyPe was designed for a high performance com-
puting environment, and all computational intensive calculations run
in parallel. PyPe is fully extendable using a plug-in type model. New
code or third party applications can be very easily added to create new
components. PyPe converts a heterogeneous working environment
into a homogeneous one where the interface to numerous and diverse
codes is consistent. Protocols within PyPe are customizable by the user
using an xml schema. All end points from calculations can be output in
PDF format.
Conformer Generation: Method Comparison and Valida-

tion. As inclusion of a bioactive conformation in ligand data sets is of
paramount importance in virtual screening, molecular conformational
searching is routinely carried out, as often compounds are stored as a
1D string or flat 2D descriptions. For the purposes of this study, three
methods of conformer generation were used and directly compared to
assess their suitability in this screening campaign. First, group A and
group B ligands were input to CORINA (version 3.46, Erlangen,
Germany) to generate single 1D−3D structures (default settings).34 In
MOE, stochastic and LowModeMD conformer generation techniques
were studied. In short, the stochastic search method generates
conformations by randomly rotating all bonds (including ring bonds)
and randomly inverting tetrahedral centers followed by an all-atom
energy minimization. LowModeMD search method generates con-
formations using a short (∼1 ps) run of molecular dynamics (MD) at
constant temperature followed by an all-atom energy minimization.
For simplification, default settings were implemented in both methods
(iteration limit of 10 000). Conformer exploration was also carried out
using OMEGA (version 2.3.2, OpenEye, Sante Fe, NM).35 OMEGA
generates conformational ensembles using predefined rules that are
applied to two independent components: model building and torsion
driving. As with MOE methods, default settings were retained for
OMEGA, with the exception of the max confgen and max confs
settings (set at 50 000 and 10 000, respectively). In order to compare

generated conformers to the validation ligand bioactive pose for each
group ligand, a custom SVL (scientific vector language) script (Chemical
Computing Group Exchange)36 was used to superimpose each conformer
to the ligand crystal pose. The degree of superimposition was calculated
by root mean square deviation (rmsd) comparison.

OMEGA Parametrization and Setting Validation. To ascertain
if deviation from default settings in OMEGA was important for
conformer generation, the effect of select parameter variation was
investigated. Previous ligand analysis showed that on average PPARγ
modulators are relatively flexible molecules containing 9.7 rotatable
bonds. In view of this information, the max confs parameter was
designated as holding potential importance in the exploration of
conformer space for this virtual screening campaign.

Group A ligands were extracted from their cocomplexed structures
and saved in SDF (structure data format) file. The max confs setting
was incrementally varied from default (100−10000). The max confgen
and rms settings were fixed at 50 000 and 0.5, respectively, to aid in
initial model simplicity. Calculation of conformer rmsd to bioactive
conformation was carried out using the custom SVL script previously
discussed (mol_rmsd.svl).

Pharmacophore Model Creation. Pharmacophore models were
created and iterated using the pharmacophore query editor function in
MOE (version 2010.10, Montreal, Canada). Two methods for
pharmacophore creation were analyzed, namely, (a) consensus
pharmacophore creation using the group B ligand data set and (b)
manual query built using the PPARγ agonist rosiglitazone as the
template ligand. In both cases, the PCH pharmacophore scheme was
used (default settings). In the manually created model, the query was
varied via adjustment of pharmacophore sphere radii, addition of
exclusion volumes around ligand binding area, defining of essential/
nonessential features, and inclusion of a partial match stipulation to the
query (see Supporting Information Table S3). Pharmacophore
hypothesis performance was assessed by comparing the retrieval rate
of actives vs decoys in the PPARγ DUD ligand data set. In tandem
with this, ROC curve analysis for pharmacophore models was carried
out on the same ligand set.

FRED: Receptor Preparation and Method Validation. Fast
rigid exhaustive docking (FRED, version 2.2.5, OpenEye, Sante Fe,
NM)19 performs exhaustive docking by enumerating rigid rotations
and translations of each given database conformer within the target
active site. Shape based filters are used to rapidly filter compounds in
the database that are not complementary to the binding site. Poses that
pass the shape fitting process can then be ranked by multiple scoring
function algorithms in the screening process. In order to ascertain the
usability of FRED in the virtual screening protocol, its ability to
successfully re-dock the bioactive conformation of a cocrystallized
PPAR agonist (rosiglitazone, PDB code 1FM637) was studied. Using
FRED receptor (version 2.2.5, OpenEye, Sante Fe, NM), the protein/
ligand moieties of the complex were defined and mutable residue
states were left at default. Constraints were placed on residues Ser289
and Tyr473 (hydrogen bond acceptor and donor features,
respectively).

To assess the performance of different scoring functions used in
FRED, a molecular database of rosiglitazone conformers (n = 1000)
created by OMEGA was seeded with the bioactive conformation of the
compound. The complete database was then docked into the
preprepared PPARγ-LBD receptor and the ranked output lists for
each scoring function visualized using VIDA (version 4.0.3, OpenEye,
Sante Fe, NM). Comparison of the rmsd of output poses to the
bioactive conformation was carried out using the previously discussed
custom SVL script in MOE. Subsequent to the initial component
validation, the ability of FRED to discriminate between PPARγ actives
and decoys was determined using the DUD set of compounds for the
PPARγ receptor. Protocol performance was assessed using standard
receiver operating characteristic (ROC) curve analysis.

ROCS: Query Creation and Validation. Rapid overlay of
chemical structures (ROCS, version 2.4.1, OpenEye, Sante Fe, NM)
is used to perform large scale 3D database searches by using a super-
position method that finds compounds similar to known actives.38

Molecules are aligned by a solid-body optimization process that
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maximizes the overlap volume between them. With a view to avoiding
a thiazolidinedione bias in the virtual screening protocol, a query for
ROCS was created using the tyrosine based PPARγ agonist GI262570
(PDB code 1FM937). On the basis of a chemically distinct scaffold
from TZDs, this variation was introduced to further test the
performance of the virtual screening protocol used. GI262570 also
possesses a larger volume than typical TZD scaffolds, allowing for
accommodation of larger potential actives to pass this stage of the
screen. The native ligand pose was extracted from the source PDB file,
and ROCS validation (version 2.4.1, OpenEye, Sante Fe, NM) was
carried out using the PPAR DUD set previously discussed (default).
Scoring function performance was assessed by ROC curve analysis.
Tiered Screening: Application and Validation. From para-

metrization and validation of individual virtual screening components
(Figure 3), the performance of the protocols combined within the
tiered screening model was analyzed. A PyPe protocol implementing
tiered screening (Figure 5) was employed in a custom built pipeline
with multiple components run in parallel in order to decrease the
computational turnaround time and facilitate the spread of individual
software calculations over multiple CPUs. From individual component
analysis, the DUD PPARγ ligand data set was used to validate the
protocol and to examine the computational performance of the tiered
screen. All components were run using validated parameters previously
detailed.
Database Screening. Virtual screening for novel PPARγ scaffolds

was performed on the SPECS vendor database39 (approximately
200 000 compounds). In order to reduce the initial data set size, a
series of physiochemical descriptors were applied to the database as
inclusion criteria. Typical descriptor values were calculated from
a series of 22 known PPAR ligands and upper/lower cutoff limits
applied to the filter process (Table 4).

Molecular Clustering. After application of the virtual screening
protocol on the reduced SPECS database, the top 900 hit molecules
were further subjected to a molecular clustering protocol in order to
prioritize compounds for biological testing. By use of a custom built
Pipeline Pilot protocol (version 8.5, Accelrys, San Diego, CA), hit
molecules were grouped into clusters using the FCFP_4 fingerprint
(average number per cluster, 45; number of clusters, 20). FCFP_4
fingerprints encode six general atom types with the numeral value
denoting the diameter of the circular substructure. The highest
consensus scoring (C_Score) molecules from each molecular cluster
were advanced to on-target biochemical testing (Table 1).
Chemical Similarity. To deduce the similarity between 1, 2, 3 and

training set compounds, a custom structural similarity protocol was
created in Pipeline Pilot (version 8.5, Accelrys, San Diego, CA).
Similarity coefficient used was Tanimoto, and predefined settings were
FCFP4, FCFP6, ECFP4, and ECFP6. All molecular structures were
checked for correct representation prior to similarity calculations.

Biological Methods. General Procedures. All compounds used
for virtual screening and biological testing were commercially available
from SPECS.39 All positive controls (rosiglitazone, GW1929,
GW0742, and GW7647) were sourced from Sigma Aldrich (St.
Louis, MO). Purities of compounds were assessed by a combination of
1H NMR and LCMS and were found to be >95%.

Fluorescent Polarization Competitive Binding Assay. Polar-
Screen PPAR competitor assay kit (PV3355, Invitrogen, Carlsbad, CA)
was used to assess the competitive binding characteristics of virtual hit
compounds against PPARγ-LBD. Experiments were carried out in line
with guidelines specified by the supplier. In short, 2× compound/
control solutions were made up in PPAR Green screening buffer (2%
DMSO) and an amount of 20 μL was added to a microwell plate
(Corning, NY, U.S.) along with 20 μL of 2× PPAR-LBD/Fluormone
complex. Final concentration of DMSO in each well was 1%. Plates
were stored in the dark at room temperature for 2 h prior to reading
on a PHERAstar Plus HTS microplate reader (BMG LabTech). On
each plate a vehicle control (1% DMSO in buffer), maximum mP
control (20 μL of PPAR-LBD/Fluormone complex + 20 μL of com-
plete assay buffer), and minimum mP control (20 μL of Fluormone +
20 μL of complete assay buffer) were included. Positive controls were
included in each experimental run (rosiglitazone and/or GW1929).
The mP values were analyzed using GraphPad Prism (version 5.01,
San Diego, CA) and curves fit using sigmoidal dose-response equation
(varying slope) to determine EC50 values. Data points represent
triplicate averages over two independent experiments. Error bars show
standard error of the mean (SEM) of replicate wells.

LanthaScreen TR-FRET PPAR Competitive Binding Assay.
LanthaScreen TR-FRET PPAR competitive binding assay kit (PPARγ-
PV4894, PPARα-PV4892, PPARδ-PV4893, Invitrogen, Carlsbad, CA)
was used as specified by the supplier documentation. In brief, 2× test
compound/control solutions were made up in TR-FRET PPAR assay
buffer (2% DMSO) and an amount of 20 μL was added to a microwell
plate (Corning, NY, U.S.). After compound addition, 10 μL of 4×
Fluormone pan-PPAR Green and 10 μL of 4× PPAR-LBD/Tb-anti-
GST Ab were added to each test well. Plates were stored in the dark at
room temperature for 2 h prior to reading on a PHERAstar Plus HTS
microplate reader (BMG LabTech). On each plate a negative control,
representing 0% displacement, was included (20 μL of 2× test com-
pound solvent (TR-FRET PPAR assay buffer, 2% DMSO)) + 10 μL
of 4× Fluormone pan-PPAR Green + 10 μL of 4× PPARγ-LBD/
Tb-anti-GST Ab). Positive controls were included in each
experimental run (rosiglitazone and/or GW1929 for PPARγ,
GW7647 and GW0742 for PPARα and PPARδ, respectively). TR-
FRET ratio was calculated by dividing the emission signal at 520 nm
by the emission signal at 495 nm. Data values were analyzed using
GraphPad Prism (version 5.01, San Diego, CA) and curves fit using
sigmoidal dose-response equation (varying slope) to determine EC50
values. Data points represent triplicate averages over two independent
experiments. Error bars show SEM of replicate wells.

GeneBLAzer PPARγ 293H DA Cell-Based Assay. GeneBLAzer
PPARγ 293H DA cell-based assay (K1419, Invitrogen, Carlsbad, CA)
and cell medium reagents were used as specified by the supplier
documentation. In brief, PPARγ 293H DA cells were plated at 30 000
cells/well in a 384-well plate and stimulated with test compounds and
suitable controls (rosiglitazone) at varying concentrations for approxi-
mately 16 h (0.1% DMSO final concentration). Cells were then loaded
with LiveBLAzer-FRET B/G substrate for 2 h. Fluorescence values at
460 and 530 nm were obtained using a SpectraMax M2e fluorescence
plate reader (Molecular Dimensions, Bath, U.K.). Data values were
analyzed using GraphPad Prism (version 5.01, San Diego, CA) and
curves fit using sigmoidal dose-response equation (varying slope) to
determine EC50 values. Data points represent triplicate averages over
two independent experiments. Error bars show SEM of replicate wells.

■ ASSOCIATED CONTENT

*S Supporting Information
Group A/B ligand set, OMEGA parametrization, pharmaco-
phore model testing data, experimental controls for artificial

Table 4. Calculated Physiochemical Descriptors of a Set of
Known PPARγ Ligandsa

MOE
descriptor min max mean

standard
deviation range

MW 317.40 590.74 469.65 76.09 300−550
B_rotN 4.0 14 9.77 2.71 4−12
a_acc 0 5 2.77 1.23 0−5
a_don 0 2 0.36 0.66 0−2
log P(O/W) 2.62 9.36 6.64 1.76 2−8

aIn order to construct a prescreening database of molecules, a series of
physiochemical descriptor filters were applied to the data set. Min/max
settings were determined from a set of 22 PPARγ agonists
documented in the literature (data not shown). Descriptors were
calculated in MOE. MW: molecular weight. B_rotN: number of
rotatable bonds. a_acc/don: number of hydrogen bond acceptor/
donator atoms. log P(O/W): log of partition coefficient of octanol/
water.
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inhibition, compound novelty data, and two ChemDraw files
containing chemical structures. This material is available free of
charge via the Internet at http://pubs.acs.org.
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